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Abstract

In this work, we review multiscale approach based on
the direction of wavefield propagation when applied
to full-waveform inversion (FWI). This strategy states
that low-wavenumber model updates can be obtained
by selective correlation of source and residuals
wavefields in gradient vector construction. By
enhancing this component the convergence to global
minimum is improved and cycle-skipping artifacts are
avoided.

Using synthetic data, the numerical implementation
of this hierarchical strategy is performed by adapting
three different wavefield separation methodologies:
implicit and explicit separation in the vertical
wavenumber domain and via Poynting vector. We state
explicit equations for normalizing these components,
in order to ensure a descent direction for the model
update, and for computing gradient components when
one of these methods is used. For the inversion
algorithm, we adopt a scheme in which the step
length is estimated via quadratic interpolation, being
adjusted at each iteration as solution approaches the
global minimum. Alternative non-quadratic functionals
for objective function are also implemented, showing
the applicability of the method in those cases.

Introduction

The problem of estimation of subsurface model parameters
through seismic data constitute the problem that full-
waveform inversion (FWI) attempts to solve. Since the
works of Tarantola (1984) and Lailly (1983) FWI becomes
a realizable technique thanks to the reformulation done by
them to the reverse-time migration principle as a velocity
model building approach. In the inversion process, an
objective function that measures the mismatch between
observed and synthetic data obtained for the estimated
model is minimized.

Since the relation between model parameters and objective
function is highly nonlinear and local optimization methods
for solving the minimization problem are used, the
convergence to global minimum is affected by secondary
minima. Several multiscale approaches has been
proposed as alternatives for dealing with this problem,
which use several elements of seismic data and gradient

vector that are less sensitive to local minima.

In the domain of the gradient, the multiscale approach
stated by Mora (1989) has been object of considerable
attention due mainly to its ability for recovering low-
wavenumber updates from any frequency component in
seismic data. In this work we explore the applicability
of three wavefield separation methods for extracting
transmission and reflection model updates. Those
methodologies are implement in the vertical wavenumber
domain (kz) and by evaluating Poynting vector. We also
study how this hierarchical approach is compatible with
alternative non-quadratic objective functions. Equations
for computing and normalizing gradient components are
given.

In the inversion algorithm, a variation of the objective
function perturbation method is implemented for estimating
the step-length of the updates via quadratic interpolation.
The algorithm adjust the amount in which current model is
perturbed, as it approaches global minimum.

Theory

Considering an isotropic and homogeneous physical
medium, with constant density, the propagation of an
acoustic oscillatory perturbation is completely describe, in
both space an time, by the two-way wave equation:

1
c(x)2

∂ 2u(x, t)
∂ t2 −∇

2u(x, t) = s(x, t)δ (x−xs), (1)

where u(x, t) represents the seismic wavefield at time t and
for position x = (x,y,z). c(x) is the velocity of propagation
of the acoustic wave. Source term, acting on the position
xs, is denoted by s(x, t) and ∇2 corresponds to Laplacian
operator in Cartesian coordinates. In this work, we use
the rapid expansion method (REM) for our extrapolation
operator (Pestana and Stoffa, 2010).

The non-linear inverse problem that FWI attempts to
solve is to estimate the seismic wavefield u(x, t) and the
distribution of model parameters in subsurface m such that,
satisfying the modeling operator (1), the distance between
calculated data dcal for the estimated model and observed
data dobs be minimum. The concept of distance is defined
by a functional called objective function, that is minimized
in the iterative algorithm.

The least-squares norm, or l2 norm, is widely used
for defining the FWI objective function. It is given by
(Tarantola, 1984)

El2(m) =
1
2
‖dcal−dobs‖2

2. (2)

where a sum over source s, receivers r and time samples
until total record length T is performed. Alternatively, other
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forms for E(m) can be adopted, such as the least-absolute
value norm, or l1-norm (Brossier et al., 2010)

El1(m) = ‖dcal−dobs‖1, (3)

and the cross-correlation based objective function (Zhang
et al., 2015; Klimm, 2013)

Ec(m) =−∑
s

〈dcal,dobs〉
‖dcal‖2‖dobs‖2

, (4)

which measures the similarity between data vectors. 〈·, ·〉
represents inner product.

Inversion scheme

A local gradient-based iterative scheme is given by
(Nocedal and Wright, 2006)

mk+1 = mk +αkpk, (5)

where, pk stands for the search vector in the direction of the
minimum of the objective function in the neighborhood of
the current model mk. The step-length αk scales the search
direction before updating the model. We use steepest-
descent method for minimizing the FWI objective function,
so the updated model is searched in the opposite direction
given by the gradient vector evaluated at the position of the
current model, i.e., pk =−g(mk).

Gradient vector contains the local sensibility information of
objective function with respect to each model parameter.
Conventionally, it is estimated via (Tarantola, 1984)

∇E(m) = g(m) =
2

c(x)3 ∑
s

∫ T

0
λ (x, t)

∂ 2u(x, t)
∂ t2 dt, (6)

assuming a point-collocation scheme for model
parametrization. The wavefield u(x, t) corresponds to
the state variable, and λ (x, t) to the adjoint-state variable,
obtained by solving the reverse-time modeling problem

1
c(x)2

∂ 2λ (x, t)
∂ t2 −∇

2
λ (x, t) =

∂E
∂u

(x, t), (7)

with final conditions λ (x, t = T ) = 0 and ∂λ (x, t = T )/∂ t = 0.

Step length is estimated by quadratic interpolation as
depicted in Figure 1. We use a modified version of
objective function perturbation method proposed by Pica
et al. (1990) in which two additional forward modeling
problems need to be solved. Fistly, the objective function
is evaluated for the model perturbed in a proportion given
by ε1. Then, the amount ε2, used for the second forward
modeling problem, is determied based on the relation
between E(0) and E(ε1) as described in Algorithm 1. The
coefficients of the parabola defined by the points (0,E(0)),
(ε1,E(ε1)) and (ε2,E(ε2)) are obtained by the solution
of the least-squares problem stated by them, letting to
compute the minimum of the parabola. The reduction
in the perturbation proportions with iterations makes this
scheme stable, even when current model is close to global
minimum.

Finally, the step length is validated using first Wolfe
condition in a backtracking line-search iterative method
(Nocedal and Wright, 2006), for ensuring decrease in the
value of the objective function.

(a) (b)

Figure 1: Step-length estimation by quadratic interpolation.
Both cases described in Algorithm 1 are depicted: for (a)
E(mk + ε1pk)< E(mk) and (b) E(mk + ε1pk)> E(mk).

Algorithm 1 Decreasing perturbation method for step-
length estimation

1: solve max(ε1|pk|)≤
max(|mk|)

100σk
;

2: compute E(mk + ε1pk);
3: ψε ← r[0,1];
4: ψσ ← r[0,1];
5: if E(mk + ε1pk)< E(mk) then
6: ε2← 10ψε ε1;
7: σk+1← σk;
8: else
9: ε2← ψε ε1;

10: σk+1← ψσ σk;
11: end if
12: compute E(mk + ε2pk);

Gradient-domain multiscale approach

Multiscale approach consists on the restriction of the
solution space of the problem in several scales such
that, for the longest scales, a linear-like version of the
objective function £(m) is created. The solution estimated
at each inversion stage is used as starting point for the
next one, until the original problem is solved completely,
thus avoiding convergence to local minima in the objective
function.

Two main classes of multiscale strategies can be identified:
those defined in the data domain, for which the restriction
operator acts on seismograms before evaluating objective
function and gradient vector, and those formulated in the
domain of the gradient, which use a selective cross-
correlation between source and residuals wavefields in
gradient construction.

The data-domain multiscale approaches use elements of
seismic data, such as frequency content (Bunks et al.,
1995), time arrival (Chen et al., 2015) and offset between
sources and receivers (Klimm, 2013), for extracting
updates that improve the convergence to the global
minimum of the objective function.

Following Tang et al. (2013), the wavefields u(x, t) and
λ (x, t) can be considered as locally separable using plane
waves and that this decomposition is reversible. Thus, the
conventional gradient (6) can be viewed as the sum of
contributions due to wavefields that propagate in a specific
direction

g(m) = ∑
θu

∑
θλ

g(m,θu,θλ ), (8)
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being θu and θλ the local propagation angles for source
and residuals wavefield, respectively. An attractive
characteristic of gradient-domain multiscale approaches
is that low-frequency components are not required for
obtaining low-wavenumber updates, since they can be
recovered for any frequency (Tang et al., 2013), given that
seismic data recorded for sufficient long-offset is available.

Equation (8) derives in two ways for recovering low-
wavenumber components of the model, as proposed in
the literature. One of them states that the background
model can be updated by considering only high-aperture
angles in gradient construction (Alkhalifah, 2015). The
second strategy follows the conclusions pointed out by
Mora (1989), who demonstrated that gradient vector for
FWI is formed by two components, a low-wavenumber
or tomographic component gt(m) and a high-wavenumber
or migration component gm(m), i.e., g(m) = gt(m) +
gm(m). Low-wavenumber updates are due to transmission
phenomena in the physical medium. Reflected waves, on
the other hand, lead to recovering of high-wavenumber
regions in the spectrum (Mora, 1989). In practice, the
tomographic component is computed by correlating source
and residuals wavefields selectively, only in those points
in which they propagate in similar directions. On the
other hand, the migration component is the result of the
correlation of u(x, t) and λ (x, t) when they travel in opposite
directions (Tang et al., 2013)

gt(m) = ∑
θu

∑
θλ

g(m,θu,θλ ), for 〈n̂(θu), n̂(θλ )〉> 0 (9a)

gm(m) = ∑
θu

∑
θλ

g(m,θu,θλ ), for 〈n̂(θu), n̂(θλ )〉 ≤ 0, (9b)

where, n̂(θu) and n̂(θλ ) correspond to the unitary vectors
in the direction of θu and θλ , respectively. Several
methods can be used for extracting unidirectional wavefield
components and any direction of propagation can be
considering when computing (9). Here, we consider
upward and downward distinction for wave propagation
direction, which is the approach most widely used.

The conventional FWI gradient assumes that transmission
and reflection components are equally weighted.
Tomographic component can be enhanced, in order
to improve low-wavenumber updates in the model, by
using a given coefficient β (Tang et al., 2013),

∇£(m) = βgt(m)+gm(m), (10)

which can be constant or variable for different model
parameters. Any of the gradient components can be
favored by using different values for β . The hierarchical
inversion strategy states that high values for the weighting
coefficient should be used at first iterations in order to
update low-wavenumber components in the model. As
this value is diminished, high-wavenumber updates are
included in the model.

Since only partial seismic information is used for building
transmission and reflection components separately, these
can differ significantly from the conventional gradient
vector or even lead to updates in a direction opposite
to the decreasing path in the objective function (Wu and
Alkhalifah, 2014). Thus, it is necessary to normalize the
tomographic and migration components with respect to the

total gradient by applying the following coefficients

βt =
(g ·g)[(gm ·gm)(g ·gt)− (gt ·gm)(g ·gm)]

B
(11a)

βm =
(g ·g)[(gt ·gt)(g ·gm)− (gt ·gm)(g ·gt)]

B
, (11b)

respectively, with B = (gt · gt)(g · gm)
2 − 2(gt · gm)(g · gt)(g ·

gm)+(gm ·gm)(g ·gt)
2. These coefficients are obtained from

the minimization of the function f (βt ,βm) = ‖βtgt +βmgm‖2
2,

subject to g(βt ,βm) = g · (βtgt + βmgm) > g · g = cte (Wu
and Alkhalifah, 2014), solved by using, e.g., Lagrange
multipliers.

Methods for wavefield separation

Implicit separation in vertical wavenumber domain

Wafefield separation is required at each subsurface
position. Wavefield evolution in time can be considered
as a set of vertical seismic profiles (VSP), u(t,z), for fixed
positions in surface (x,y). Let U(ω,kz) be the 2D Fourier
transform of u(t,z),with ω stands for the temporal frequency
and kz for the wavenumber in z direction. Since the direction
of wave propagation is determined by phase velocity, v =
ω/k, wavefield can be separated in Fourier domain as (Hu
and McMechan, 1987)

Uu(ω,kz) =

{
U(ω,kz), ωkz ≥ 0
0, ωkz < 0

(12a)

Ud(ω,kz) =

{
U(ω,kz), ωkz < 0
0, ωkz ≥ 0

, (12b)

where Uu e Ud correspond to 2D Fourier transform of
isolated upward uu(t,z) and downward ud(t,z) real-valued
components, respectively. Implementation of equation
(12) requires storing wavefield for all time steps, being
impractical for 3D problems.

Considering a particular frequency ω in wave spectrum,
monochromatic wavefield elements propagating in
opposite directions can be defined. Since the stack
of unidirectional components is still a wavefield that
propagates in a single direction, upward ū+(t,kz) and
downward ū−(t,kz) elements of the wavefield ū(t,kz), which
corresponds to the 1D Fourier transform of u(t,z) in z
dimension, can be obtained, considering the contributions
of all frequency components at time t, through (Liu et al.,
2011)

ū+(t,kz) =

{
ū(t,kz), kz ≥ 0
0, kz < 0

(13a)

ū−(t,kz) =

{
ū(t,kz), kz < 0
0, kz ≥ 0

. (13b)

The components u+(t,z) and u−(t,z) are complex-valued
functions and are related to the analytic signal of the
wavefield in the direction of z (see equation 13) as

u+(z) =
1
2
[u(z)+ iHz{u(z)}] (14a)

u−(z) =
1
2
[u(z)− iHz{u(z)}], (14b)
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where, Hz denotes the Hilbert transform with respect to
z dimension and the wavefield u±(z) corresponding to a
particular position at the surface (x,y) an time t, such
that the real part of the sum reconstructs the propagated
wavefield and its imaginary part is zero,

u(x, t) = ℜ{u+(x, t)+u−(x, t)} (15a)
0 = ℑ{u+(x, t)+u−(x, t)}. (15b)

The upward λ+(x, t) and downward λ−(x, t) elements of the
adjoint wavefield can be obtained analogously.

When applying the filter (13) in Fourier domain,
the numerical discontinuities at origin and Nyquist
wavenumber should be avoided. The discontinuity at kz = 0
is circumvented by incorporating a damping function with
a form f (kz) = 0.5[1− cos(πkz/Nkz)], where Nkz defines the
length of the window in which f (kz) is applied (Dellinger and
Etgen, 1990). The discontinuity at Nyquist wavenumber,
due to the periodicity of the signal in Fourier domain, is
treated by including the absorbing boundaries, used for
modeling, in the wavefield separation.

When used this methodology of separation, the
transmission and reflection components of the gradient are
obtained through

gt(m) =
4

c(x)3 ℜ∑
s

∫ T

0
λ−(x, t)

∂ 2u+(x, t)
∂ t2 dt (16a)

gm(m) =
4

c(x)3 ℜ∑
s

∫ T

0
λ+(x, t)

∂ 2u+(x, t)
∂ t2 dt. (16b)

Explicit separation in vertical wavenumber domain

Computation of the upward wavefield component uu(t,z)
through (12) can be written as (Shen and Albertin, 2015)

uu(t,z)=
1

4π2 ℜ

∫ +∞

−∞

∫ +∞

−∞

2U(ω,kz)ei(ωt+kzz)Ω(ω)κ(kz)dωdkz,

(17)
where,

Ω(ω) =

{
1, ω ≥ 0
0, ω < 0

and κ(kz) =

{
1, kz ≥ 0
0, kz < 0

, (18)

considering the symmetry of Fourier domain and that
uu(t,z) is also obtained when the conditions ω < 0 and
kz < 0 are satisfied. Noticing that

û(t,z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

2u(t ′,z)eiω(t−t ′)
Ω(ω)dt ′dω

= u(t,z)+ iHt{u(t,z)},
(19)

the upward and downward components can be separated
perfectly by applying the filters κ(kz) and 1−κ(kz) in Fourier
domain, respectively, to the wavefield û(t,z) (Shen and
Albertin, 2015)

ūu(t,kz) =

{
¯̂u(t,kz), kz ≥ 0
0, kz < 0

ūd(t,kz) =

{
¯̂u(t,kz), kz < 0
0, kz ≥ 0

,

(20)

where, ¯̂u(t,kz) denotes 1D Fourier transform in the direction
of z of the wavefield û(t,z), considering a specific position

in surface (x,y) and time t. Equation (19) describes the
methodology used for estimate the analytic signal of u(t,z)
in Fourier domain. Thus, û(t,z) is a complex-valued field
whose real part is the conventional wavefield u(x, t) and
the imaginary part correspond to its Hilbert transform in the
direction of time Ht{u(x, t)}. It is interpreted as the positive-
frequency component of the wavefield, such that, knowing
the sign of temporal frequency, the extraction of upward
and downward components through (20) is explicit.

Since wave equation operator (1) is commutative with
Hilbert transform in time, the imaginary part of the
analytic wavefield û(x, t) can be calculated by solving a
forward modeling problem using Ht{s(x, t)} as source
term. Equivalently, upward and downward components of
residuals wavefield can be computed. In this case, virtual
secondary source Hilbert transformed forward in time is
used for obtaining the imaginary part of λ̂ (x, t) (Shen and
Albertin, 2015).

Separation using Poynting vector

Poynting vector can be computed for estimating the
direction in which energy propagates. Considering an
acoustic wave, the Poynting vector S is given by (Bonomi
et al., 1998)

S =−∇u(x, t)
∂u(x, t)

∂ t
, (21)

where, the operator ∇ represents the gradient with respect
to spacial variables and corresponds to the displacement
vector of the particles. The propagation angle of the
wavefield, at each position x of modeling space and for
each time step t, can be computing from Poynting vector
(Araujo et al., 2014)

θ = arctan
(

Sz

Sx

)
, (22)

being Sx and Sz the components in the direction of x and z
of the Poynting vector, respectively. Upward and downward
elements are then obtained as

uu(x, t) =

{
u(x, t), θ ∈ [0,π]
0, θ ∈ [−π,0]

(23a)

ud(x, t) =

{
u(x, t), θ ∈ [−π,0]
0, θ ∈ [0,π]

. (23b)

This separation procedure does not alter seismic amplitude
of the wave in their respective components.

When computing Poynting vector, time-derivative of
wavefield is required. It can be estimated using an
extension of REM operator, with high accuracy and
negligible computational cost (Tessmer, 2011).

In these cases, in which wavefield components are
obtained in an explicit manner, in kz domain or through
Poynting vector, tomographic and migration modes of
gradient vector are calculated as

gt(m) =
2

c(x)3 ∑
s

∫ T

0

[
λu(x, t)

∂ 2uu(x, t)
∂ t2 +λd(x, t)

∂ 2ud(x, t)
∂ t2

]
dt

(24a)

gm(m) =
2

c(x)3 ∑
s

∫ T

0

[
λu(x, t)

∂ 2ud(x, t)
∂ t2 +λd(x, t)

∂ 2uu(x, t)
∂ t2

]
dt.

(24b)
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Numerical Results

We test the performance of wavefield separation methods
in the scatter model shown in Figure 2(a) (Tang et al.,
2013). It consists on a grid of 101× 201 points located
each 10 m. Observed data corresponds to the record of
11 shots, separated each 200 m. Record length is 1.2 s,
with interval sampling of 4 ms. Seismic source is a Ricker
wavelet with a dominant frequency of 25 Hz. The initial
model is shown in Figure 2(b). The inversion problem is
solved in four stages, each one defined by a particular
tomographic weight: β = 15.0, 10.0, 5.0 and 1.0. At each
scale, 10 iterations are performed. In Algorithm 1 we use
σ0 = 1.0 and ψε = ψσ = 0.2.
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Figure 2: Scatter model: (a) true and (b) initial model used
for inversion.

The inversion results are compared in the velocity profiles,
located at x = 1000 m, depicted in Figure 3. While
the results obtained when used objective functions based
on l2-norm and cross-correlation between data vectors
are satisfactory for all cases and significantly similar, the
reconstruction is poor for the l1-norm. This is caused by
the contributions of multiple scattering events in gradient
computation. Due to virtual secondary source is a
sign function, it reinforces the amplitudes of second-
order reflections not considered in initial model, which are
spuriously correlated with source wavefield as first-order
events in gradient construction. Also, it can be seen that
the recovered profiles are closer to true parameter values
in the cases in which Poynting vector is used as wavefield
separation parameter.
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Figure 3: Velocity profile in depth of estimated scatter
model after inversion. Corresponding wavefield separation
methods are (a) implicit in kz domain, (b) explicit in kz
domain and (c) Poynting vector.

The computational performance was measured. The
execution times required for each algorithm are
summarized in Figure 4. In general, separation via
Poynting presents the lowest computational cost. The

requirements of Fourier transforming for implicit separation
method make it slightly more demanding. The highest
computation times correspond to explicit separation
methodology in kz domain, given that modeling problem
has to be solved twice for each analytic wavefield û(x, t)
and λ̂ (x, t). When used an explicit method for wavefield
separation, the algorithms guided by an objective function
based on l1 norm shows anomalous high times for
execution. In these cases, the estimated step length by
quadratic interpolation do not satisfy first Wolfe condition
and several iterations of the backtracking algorithm need
to be performed before accepting the updated model.

Implicit kz Explicit kz Poynting vector
0

50

100

Ti
m

e
[m

in
]

l2-norm
l1-norm
cross-correlation

Figure 4: Algorithm-execution time for scatter model using
alternative objective functions and methods for wavefield
separation.

The multiscale inversion method was also applied to
Marmousi model (Figure 5(a)). The model consist of
425×369 grid points with 8 m space interval in z and 25 m in
x directions. It contains an upper water layer (not shown) of
400 m in thickness, for avoiding direct wave effects in model
updates. 62 sources spaced each 150 m are considered
for inversion. The record length is 3.4 s sampled each 4
ms. The source has a peak frequency of approximately
15 Hz. All the model nodes at z = 0 m act as receivers.
Inversion is carried out in six stages in which β is defined
as 6.0, 5.0, 4.0, 3.0, 2.0 and 1.0. At each scale, 30 FWI
iterations are performed.
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Figure 5: Marmousi model: (a) true and (b) initial model
used for inversion.

Estimated models for each objective function definition are
shown in Figure 6. The results obtained are satisfactory
regardless of the functional used for E(m). We confirm
that, since initial model does not contain any reflector, they
are approximately located in the first iterations. Afterwards,
along the inversion process, reflector positions and interval
velocities are updated simultaneously as established by
Mora (1989). The updated reflectors in the model at
the beginning of the iterative process let to alleviate the
influence of second-order events in the search directions
obtained when objective function was based on the l1-
norm.
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Figure 6: Estimated Marmousi model after inversion.
Objective functions are based on (a) l2-norm, (b) l1-norm
and (c) cross-correlation functionals.

Conclusions

Different separation methods are applied for extracting
directional wavefield elements and then used for estimating
low- and high-wavenumber updates in time-domain full-
waveform inversion. The equations used for computing
these components are also given for those cases in which
wavefield separation is carried out by implicit schemes
in kz domain or by explicit strategies in kz domain or
using Poynting vector. Numerical experiments indicate that
gradient components obtained via Poynting vector scheme
are more suitable when these are combined by using
a constant coefficient at each inversion stage, showing
superior inversion resolution and less computation time.

A strategy for choosing model perturbations in step-length
computation via quadratic interpolation is described. This
methodology let us to modify the proportion in which model
is perturbed with iterations, making the inversion scheme
stable even when the estimated model is approaching the
global minimum of objective function. Due to gradient
filtering performed at each iteration, the computation of
search direction using model and gradient information from
past iterations is prohibitive.
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